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Fluid Mechanics of the Obliquely Mounted MIV Gauge-(John B. Bdzil)
L Introduction

"Over the 40-yr history of shock-compression science, numerous physical
phenomena have been considered for use in detecting wave profiles. Few of the devices
have actually been used for a significant and persistent study. Part of this history is
connected to the difficulty in actually developing a credible device."™ These remarks
from Graham summarize the current state of in situ particle gauge technology.
Uncertainties arising from the affect that gauge response time, perturbation to the flow,
calibration, and reproducibility have on accurate in situ measurements are not completely
understood. If the error in accuracy resulting from these uncertainties is of order of 5%,
the physical phenomena can still be the basis of a useful technique. With increased
understanding, sensible corrections for such errors could be made. As of this time, no
technology has surfaced as the clear choice for such a gauge.

At Los Alamos, magnetic gauges are the technology of choice. The obliquely
mounted Magnetic Impulse Velocity (MIV) gauge first introduced by Fowles” and
popularized by Vorthman and Wackerle! has been used @ DF-site for over a decade to
make in situ measurements of lagrangian particle velocity in inerts and explosives.
Recently Gustavsen, Sheffield, and Alcon™ have observed that these gauges do not
provide an accurate measure of the particle velocity in liquids. The purpose of this report
is to describe the response on shock loading of an obliquely mounted thin inert slab
imbedded in a inert whose density and compressibility are different from that of the slab.
Obliquity is measured relative to the shock normal direction in the imbedding inert.

This study assumes perfect fluid response (i.e., no viscous etc. effects). The
conclusions that I draw from this study are:

(1) the pressure obtained in the initial shock loading is different in the slab and
imbedding material,

(2) pressure equilibrium is obtained quickly between the inert slab and the
imbedding material (the system reaches hydrostatic equilibrium), which in
turn affects the density ratio (p/p, ) in the slab, from which it follows by

the Bernoulli law that, '

i “Solids Under High-Pressure Shock Compression,” R. A. Graham, Springer-Verlag, Berlin, 1993,

p.62-5.

1 “Experimental Technique and Instrumentation,” by G. R. Fowles appearing in Dynamic Response
of Materialsto Intense Impulsive Loading, edited by P. C. Chou and A. K. Hopkins, Air Force
Materials Laboratory (1972).

1 “Reaction Rates from Electromagnetic Gauge Date,” by J. Vorthman, G. Andrews and J. Wackerle

appearing in Eighth Symposium on Detonation, Albuquerque, July 15-19, 1985, p. 99-110.
M “Response of Inclined Electromagnetic Particle Velocity Gauges in shocked Liquids,” by R.
Gustavsen S. Sheffield and R. Alcon appearing in (1993) APS Proceedings.
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3) the vector particle velocity in the slab and imbedding material are not
equal.

Stated somewhat differently, the underlying compressible fluid hydrodynamics does not
support the operation of an obliquely mounted "particle” gauge unless the equation of
state (eos) properties of the gauge and imbedding material are either identical or enjoy a
unique relation. The successful operation of these gauges depends on a non-hydrostatic
environment and possible transverse stresses (viscosity related) across the slab-imbedded
material interface. To date, no study of these effects has been completed. Further study is
needed before the MIV gauge results can be reliably interpreted.

This report is divided into three sections. In Section II, I give a brief history of
the MIV gauge and the basic problem geometry and hydrodynamic equations for the flow.
The specific example of a gauge that is aligned with the flow is considered in Section III.
In Section IV, I give results for the measured particle velocity as a function of initial gauge
angle. The conclusions drawn from this study are presented in Section V.

II. History and Problem Geometry

Twenty-three years ago Fowles™ proposed a modification of the Dremin stirrup
electromagnetic velocity gauge that could be used to provide a direct measure of
momentum (pressure) rather than particle velocity. A key ingredient in the operation of
the gauge is that the plane of the gauge not be coincident with the plan 2 of the shock (i.e.,
the problem is inherently multi-dimensional). Figure 1 from Fowles = article, shows a
side-on view of his momentum gauge, and Figure 2 shows a top view of the deflected,
shock-compressed gauge. The operation of the gauge is described in ref. [2] along with a
caution; "the theory of the gauge operation assumes that the oblique cut in the sample,
along which the sensing element is placed, not perturb the wave being studied and that no
slippage occur between the specimen material and the gauge. Limitations due to these
possible effects are not yet established.” Building on the ideas of Fowles, Vorthman and
Wackerle[3] constructed a multi-clement gauge that could be used to simultaneously
measure particle velocity (stirup probe) and stress (Fowles probe) at a number of
different lagrangian locations. One advantage of their technique is that one experiment
yields the data that previously required many experiments using the established techniques;
thus shot-to-shot variations were eliminated.

]

A key to the operation of such a gauge is that the gauge needs to be obliquely
mounted. To my knowledge no theoretical analysis was done of this multi-dimensional
flow problem. Rather a number of symmetrical impact experiments, using a plastic as the
imbedding material, were performed to confirm the efficacy of the technique. Based

3! “An Electromagnetic Stress Gage,” by C. Young, R. Fowles and R. Swift appearing in Proceedings
of Sagamore Conference on Shock Waves and Mechanical Properties of Solids, Army Mechanics
and Materials Research Center, 1970.

&9




DX-1
QR-96-1

largely on the positive results obtained in those few experiments,’ the technique was
adapted for routine use and is now widely used at DF-site.

In October, 1992 I learned that Gustavsen and Sheffield were seeing a discrepancy
between the expected and observed particle velocity. When the MIV gauge package was
used in liquids such as nitromethane, the measured particle velocity was both lower than
expected and a function of the initial gauge angle, (see Figure 2). The calculations I
report on now were done in November, 1992. My goal was to gain an understanding of
the fluid mechanics of the obliquely mounted MIV gauge.

II.1 gauge geometry and coordinates

The problem geometry is shown in Figure 3. Teflon is used as the gauge substrate.
The variables and coordinate transformations used are:

variables

D,  =unperturbed shock velocity in fluid,

Up = unperturbed supporting piston velocity,

Vph = phase velocity of unperturbed shock along unperturbed Teflon interface
=D, /sin¢

P = pressure

p = density

Po = initial density

where the + subscript denotes the shock state, and

coordinate transformations

undeflected gauge &, = ising—jcos¢, & )= i cos ¢ + ] sin ¢

basis vectors

deflected gauge én =fsin(¢—6)—}cos(¢—0), 25 =i cos (¢—6)+}'sin(¢—9)

basis vectors

so that
i= 25 cos(¢—0)+ ey sin(¢~6)

j= & sin(¢—6) =&y cos(¢—6)

and where the piston velocity is

] Private communication (1986), J. J. Dick
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ljp =Up {éé sin(¢ — 6) — ey cos(¢ —9)}.
A simple kinematic argument can be used to get the velocity of the gauge, Ug’.

Assuming that the flow normal to the gauge is just equal to the component of Up from
the inert flow, -Upcos( ¢-0), then

Ug =2gUg —2,U, cos(¢p—6)
= H{Ug cos(9 - 6)~ Uy, cos(9 ) sin($ - )}

+}{U€ sin(¢—9)+Up C0S2(¢—9)}-

The } component of (7g is the measured gauge velocity. Once Ug is determined the

velocity measured by the gauge is determined. If Ug = Up sin (6-6) (i.e., the component
of Up in the ?:é - direction) then the gauge measures Up, the desired result. What I show

is that

Ué =U, sin(¢—0).

I assume that the flow is govemed by the two-dimensional Euler equations.
Transforming these equations to a reference frame that moves with speed (in the
25 — direction)

V= D/sin($-9),
at an angle (¢-0) with respect to the plane of the undisturbed inert shock (i.e., in the

direction of the deflected gauge), and assuming that the flow is steady in this reference
frame, yields

mass V- (pl) =0
2-momentum U - V(U) = - —;;VP,
energy U-Vie)- (P/pz) U.-VP =0,

where
%

~ d ~ 0
en% + 85 ‘5&_,
U = énUn q 25 (Ué . DO/sin(¢—9)),
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and Uy, Ug are the velocity components in the 1} and § directions, P is the pressure, p is
the density, and e(P,p) is the specific internal energy. In the standard fashion, these
equations can be rewritten to get the differential form of the Bernoulli law

U-V{e+P/p +iv?+Lw, -, /sin(¢—0))2} =0,

and in isentropic regions the energy equation can be solved to get P vs p along an
isentrope

Py(p).

For purposes of this demonstration, I'l assume a simple polytropic eos in both the gauge
and surrounding inert and use the same polytropic exponent, for both

e = P/pAy-1),
and

PpY = f1S),

where § is the entropy. The initial density of the two materials is of course different and
these variables along with the gauge angle, ¢ control the solutions that I find. The analysis
I report here can easily be extended to a more general e(P,p) eos. 1 give the results for a
Mie-Gruneisen fluid at the end of the Section IIL

III. The 90° Gauge

The simplest example of an oblique gauge is one that is parallel to the flow (at
right angles to the plane of the shock). Figure 4 shows a snapshot of this gauge geometry.
Assuming that the only significant entropy generation in the Teflon occurs at the lead
shock, it follows that

P/py _ 2p()TD(‘)" coszm y-1 14
Y+1 (Y+1)por

where the subscript T refers to Teflon. The differential form of the Bernoulli law states

e+P/p+2Uf+L(Us — Dy /sin(¢~6))% = constant

along streamlines. For this geometry the constant is the same constant on every
streamline, so that I get

14,2 1 2 2
e+P/p+5Uj+5(Us —Dg)* =1 Df.

Using the P/pY rule on the isentrope and a polytropic eos, it follows that in the Teflon
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rY—1
. — 2
4'}IDOCOS 6‘)(_}1_) Y +U£+(U§—D0) =Dg.
(y+1)? \P:

For this geometry, Uy, = 0 either on the axis or far downstream from the initial interaction
with the lead inert shock. Since the acoustic communication times correspond to just a
few reverberations of the gauge, it follows that far downstream (a distance of a few gauge
thickness’) the pressure is equilibrated and equal to the pressure behind the shock in the
inert

2
p = 2Po1Pp
y+1 '’
where pyy is the initial (unshocked) density of the inert, and we use the same adiabatic
exponent 7y for both the Teflon and the inert. Using this value for P, it then follows that

y-1
: 2 ¥
Ug = Dyi1- T B Pol_ .
(Y+1)* \ por cos” @

This is the particle velocity measured by the gauge.

In order to test this theoretical result and also to get more information about the
near gauge flow in the inert, I did a two-dimensional numerical simulation of this problem
using the Los Alamos, second-order accurate Godunov hydrocode, CAVEAT."" For this
comparison I used the parameter values

Teflon: por = 2.15g/cc, Y=7

inert: por=1.12g/cc, y=7

"nitromethane"
( ) Dy = 4 mmhus, Uy = I mmAis

case 1
inert: por=1.8g/cc, y=7
JIHMXH
Dy = 4 mm/us, Up = I mm/is.
case 2

and

i “CAVEAT: A computer code for Fluid Dynamics with Large Distortions and Internal Slip,” Los
Alamos Report, L.A-10613, (1990).
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inert: Por = 3.33g/cc, y=7
CHI,
Dy = 4 mm/us, Up = 1 mm/jLs.
case 3

Both the axial particle velocity and the pressure contours obtained from the CAVEAT
simulations of these problems are shown in Figures 5 and 6 and 7 for cases 1 and 2 and 3,
respectively. From these figures, it is clear that after a short, high velocity transient, the
particle velocity plateaus at a value considerably below the piston speed Up = Imm/is,
for cases 1 and 2 and above for case 3. Comparing the plateau values obtained in the
simulations with the result of evaluating our theoretical expression

J=d
Ug = Dp{1- J—LZ(M) v
(y+1) Por
I find good agreement
Steady Theory CAVEAT
Case 1 0.536 mm/Ais 0.54 mm/us
Case 2 0.839 mm/us 0.84 mm/us.
Case 3 1.588 mm/us 1.48 mm/us.

Therefore in the extreme case of ¢ = 90°, the difference between the velocity of the slab
and the true particle velocity, Up = 1 mmAis can be very large. In the limit py; = pyy
(recall that we assumed identical y's for the gauge and inert) the gauge and inert are
identical materials, which yields Ug = 1 mm/us.

To understand the dominant role played by the density ratio, (0y;/por), consider

the following result. The above expression can be generalized to account for different
polytropic exponents in the Teflon, y and the inert, ¥

Y—1
4Y  yy+1?( Pory+n | ¥
F+1)2 Wr+0*\ Porz+1) '

Ug = Dp{1-11-

Using this result we can determine the conditions under which the observed and actual
particle velocities would be identical, Ug = 2Dy/(¥ + 1). This occurs when
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i/

~ ~ -1
por _ (7+1) | Fy+1? |7

PoT (y+1) | y7+1)2

The deformation of the Teflon slab (thickness) can be calculated by using the
results for Ug and p obtained above and integrating the mass conservation equation

V(pU)=0

over the shaded region in Figure 4. The example shown in Figure 4 depicts the case of a
high density slab surrounded by lower density inert. Performing the integration, yields

(U§P> Por l.
—2—=Dy| 1-E 1 |
(p) 0( <p> lour)

where ( ) denotes an average taken in the n-direction over the horizontal boundary of the
region. Thus the relative thickness of the shocked gauge is

bout - DOP or
in — Dolp)=Ugp)’

which on assuming a weak n-dependence for p and Ug becomes

‘out=P0T( ! J
L, Pr \1-U:/Dy

We can use the expression to determine how the thickness of the driven slab
changes. For the simple example of polytropic materials with identical polytropic
exponents, {,, . /l;, is

1
(7*1')['001 J”
tout= ¥y pOT

‘in

r=1
]__47 [MJ 4
(y+1)? \Por

Provided that the flow in the gauge is subsonic (look ahead for the definition of the sonic
parameter) b, A;, is an increasing function of (py;/por). When py; = pyp we have
bour Ain» While for py; > por we have b, b,
Por < Por leads to a thinning of the embedded gauge. For the case 3, CH,I, inert
example, this expression predicts the observed thickening of the gauge.

Thus the typical case for explosives,
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We can rewrite the general expression for Lout /linto get the material property
independent result

Po bin Po
Ug)p-(Ugp = (2| F |20
(Ugr- (Ug)r (p)T lout (P)l

If the slab is to be an accurate gauge, then ( Ug); = (Ug)7- This expression shows that we
have three "variables" at our disposal to help achieve the desired equality of velocities:

(P_O) (&)

Pt \PJI

and !,,, /l;,. For the simple polytropic fluid system (identical ¥'s), the change in density
of the slab occurs via two steps: (1) shock loading to

_ Y+1
PT = Por V-1

followed by (2) an isentropic transformation to a state of pressure equilibrium with the
imbedding inert

wiles)*

pPr = POT[.),_I Por

Thus the compression of slab and inert are different and

-1\ | ¢ 1
-

For the typical Teflon-based gauge (slab) imbedded in explosive (inert), Por <Por-
Thus to get ( Ughg = ( Ug)r would require (;, oL, ., which is not likely. Perhaps the
anisotropic nature of thin polymeric slabs such as Teflon could be used to some advantage

here to control (¢, /1;,) and (%) , independently. This remains to be seen. This is a
T

very compelling, rather general argument. It does not depend on the assumed inviscid
nature of the flow. Thus it would appear that the basic physics does not favor the
operation of the oblique gauge.

I've repeated all of these calculations using a Mie-Gruneisen equation of state for a
Teflon slab and various imbedding inerts. The material constants and results are shown
below:
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Hugoniot: Uy =Cy + § Up
Po(8/cc) Co(mm/ s) S (pI')
Teflon 2.15 1.68 1.79 1.69
nitromethane 1.123 1.3 1.62 —
PMMA 1.18 2.55 1.65 —
CH,1, 3.33 1.25 1.65
Table 1. Equation of State data
(p/Ps), (p/Po), (Ug)r(mm/ys)
nitromethane 1.52 1.26 0.525
PMMA 1.31 1.31 0.611
CHy1, 1.53 1.46 1.760

Table II. Calculated results for U p =1 mm/ps

A Fortran code is available to do these calculations.

The large discrepancy between the desired and calculated velocity for case 1 and 2
when ¢ = 90° argues that we either need to substantially increase the specific energy of
the shocked Teflon so as to get a higher compression or that we increase the "effective"
%ut 80 that 4, > 4, A quick calculation using the Bernoulli flow model described above
shows that the sonic parameter

y-1

2 2 .2
- —c?=p,2lj-2Yeos @f p ¥
(Ug -Dp)" -Cc? =Dy 1 2T (m) (0,

is less than zero (i.e., the flow relative to the shock is subsonic). Therefore, the region
where the lead shock sits in the Teflon can be influenced by the flow near the leading edge
of the Teflon. At least two simple routes exist by which energy can be transferred into the
Teflon slab; Option (1) normal forces applied on the narrow end of the slab, and Option
(2) tangential forces (viscosity related) applied on the large faces of the slab.

The CAVEAT simulations show very little pressure gradient near the leading edge
of the Teflon. Thus, we anticipate that the inert/Teflon interface is Rayleigh-Taylor stable
(i.e., the interface area will not grow). This combined with the small area of this region,
argue against this as an important region to consider. Thus, Option (1) does not offer a
viable mechanism for "densifying" the Teflon.
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The current simulations do not admit tangential forces across the large faces of the
slab because we dealt only with Euler fluids. When tangential forces due to viscous forces
are allowed, it seems highly unlikely that the pressures in the Teflon could be increased
to the point that a large amount of additional compression could be achieved. The
more likely possibility would be a Kelvin-Helmholtz type instability along the
interface. The net affect of such an instability would be to "wrinkle" the Teflon slab,
thereby making 4,,,, effectively larger than 4,. This seems like the only plausible scenario

for getting (Ug)r = (Ug); .

However, something about a "wrinkled" gauge seems very unattractive!

IV. "Small" ¢ Oblique Gauge

The solution to the oblique gauge problem can be obtained with a simple extension
of the ¢ = 90° problem considered in the previous section (see Figure 8). As before, we
have a Bernoulli law

e+Pp+L UL+ L (Ug- Dy/sin(9-6))* = L (Dy/sin(9-6))%

along a streamline. Again assuming that the principal entropy generation in the Teflon
occurs at the lead shock (see Figure 8), it follows that

P/pY = constant

along streamlines (different constants for different streamlines). This isentropic treatment
of the flow along gauge streamlines neglects the weak wave reflections that occur behind
the lead shock. The lead shock in the Teflon is oblique with respect to the lead, driving
shock in the inert. For the case of supersonic flow depicted in Figure 8, the state of the
lead shock in the Teflon is obtained by doing an oblique shock match with an incident inert
shock having an attack angle ¢.

A new variable appears in the oblique gauge problem: the gauge turning angle, 6.

The initial value of 9 is given by the oblique shock matching calculation. Gustavsen,
Sheffield, and Alcon ~ give the asymptotic value of 0 as

tan (¢ - 8) = (ﬂo_) tan ¢.
P I

I have done the oblique matching problem for a number of different ¢ for the model
system

Dy = 4mm/ls, Y=3
por = 2.15g/cc, por=1.12g/cc.

98




DX-1
QR-96-1

The results of these calculations are shown in Table III. For this range of angles

0 einert /easymp (Py)r
30° 12°/14° 12GPa
40° 15°/17° 12GPa
20° 8°/10° 12GPa
10° 4°/5° 11GPa

Table IIL - Oblique shock matching results

of attack, ¢ the shock pressure in the Teflon is relatively independent of ¢ and equal to
(P,)7 =12 GPa and (p,)r = 4.3 g/cc. Using these values in the isentrope and Bernoulli
expressions, yields

y—-1

Dy sin(9-6)2) 2y (P (pY 7
U £= a1~ =
sin(¢-0) Dy, Y—-1{p, T P, T
Again assuming pressure equilibrium between the inert fluid and Teflon slab (the gauge)
P |_389
P, 12

gives the results shown in Table IV, where

Ugauge = Ug sin(0-6) + U, cos? (¢-6).

o 6 (¢-6) Ug(mmds) Usauee(mm/is)
0° 0° — — 2
10° 4° 6° 0.09 1.99
20° 8° 12° 0.18~ 1.95
30° 12° 18° 0.27 1.89
40° 15° 25° 0.37 1.80
<90°> 0° 90° 1.13 1.13

Table IV. The measured values of Ugauge (true value; Ugauge = 2mm/ps)

Therefore, for this simple Euler fluid model we find that for the typical 30° gauge angle,
we have an error of -5% in the measured velocity. If Ug was set identically to zero
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(corresponding to no gauge motion in the &-direction) the error would be -10%. Thus for
the 30° gauge geometry the maximum error we could realize is about -10%.

V. Conclusions:

The mass conservation argument presented in Section III shows that the first order
physics of the oblique gauge is not favorable for its reliable operation. For a ¢ = 30°
gauge this can lead to an order 5% error in the velocity measurement. Second order
physics (such as viscosity, strength, non-isotropic material response) could lead to
improved agreement between the calculated and desired response of the gauge. However,
the time scale for these phenomena is usually slow compared to the s time scale of
interest, which is why we often neglect this physics. If they turn out to be important, their
time scale could easily be comparable to the time scale of interest in our measurements.
Should the "wrinkled" gauge effect discussed in Section IIT be important, it would
probably be irreproducible.

From the arguments given above, it appears that the second order physics of the
gauge/imbedding material pair need to be properly tuned to have a successful oblique
gauge. It is therefore difficult to imagine how such a gauge could give an accurate
measurement of the flow in a reacting explosive. Properties, such as viscosity, etc. can
change significantly in going from unreacted to reacted explosive.

Some suggestions:

(1) study reacting explosives at several gauge angles,

(2) adjust gauge spacing so that same particles are sampled at all gauge angles,

(3) ¢ =90°is the best geometry to study the physics of the oblique gauge, and

(4) use calculations to help understand the ¢ = 90° experiments.

Until we have a better understanding of the oblique MIV gauge, user beware.

Perhaps the standard, non-oblique stirrup probe would be the best near term alternative.
This problem deserves some careful experimental and theoretical study.
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Figure 1. Electromagnetic stress gauge technique. (a) prior to shock arrival (b) during
shock transit of sensing element (side-on view).
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Figure 2. Electromagnetic stress gauge (top view). The plane of the gauge is deflected by
the interaction.
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Figure 3. The geometry and coordinate frames for the MIV gauge analysis.
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Figure 4. The simple, symmetric ¢ =90° gauge problem. Shown is the case where p, of
the Teflon gauge is greater than p, of the surrounding inert (the typical case).
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Figure 5. The particle velocity along the centerline of the ¢ = 90° gauge at t = 0.43us for
case 1. is shown in Fig. 5a. The pressure contours for the ¢ =90° gauge at
t =0.43us for case 1. is shown in Fig. 5b. The lack of pressure contours shows
that pressure equilibirum is a good assumption.
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Figure 6. The particle velocity along the centerline of the ¢ =90° gauge at t = 0.7us for
case 2. is shown in Fig. 6a. The pressure contours for the ¢ =90° gauge at
t =0.7us for case 2. is shown in Fig. 6b.
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gauge end
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Figure 7. The particle velocity along the centerline of the ¢ = 90° gaugé' at t =0.43us for

case 3. is shown in Fig. 7a. The density contours for the ¢ =90° gauge at

t =0.43us for case 3. is shown in Fig. 7b. Note that the shock leads in the gauge
and that the shocked gauge is thicker than the unshocked gauge.
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Figure 8. An expanded view of the oblique gauge/shock interaction. The small amplitude
reflected waves are neglected in this analysis. The case of supersonic flow as seen

by an observer traveling at V,, is considered.
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